
  

A Novel Image Noise Level Function Estimation Approach using Camera 
Response Function Constraint 

Heng Yao 

School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 200093 Shanghai, China 
 

Abstract. In this paper, we propose a noise level evaluation method for real captured photos. Different from 
conventional noise removal methods that assume noise follow a simply additive Gaussian distribution, noise 
distribution in our method is supposed to be a more sophisticated intensity-dependent distribution, which has a better 
fit with actual noise model. Follow the definition of noise level function (NLF) which represents the variation of the 
standard deviation of noise with respect to image intensity. After exposing the close relationship between NLF and 
camera response function (CRF), we fit the curve of NLF with the constraints imposed by the shape of CRF. 
Index Terms— image noise estimation, noise level function, camera response function 

1 Introduction 

For noise contaminated photos, random noise is mainly 
caused by quantum effects, thermal fluctuations and dark 
current leakage. Although hardware manufacturers have 
been trying to suppress random noise, the problem is still 
inevitable. Estimating the noise level from a single image 
is a significant task in many computer vision algorithms, 
especially for de-noising and forensic applications. Most 
algorithms [1-2] use the additive white Gaussian noise 
(AWGN) model, and generate noisy images by adding 
white noise manually into noise-free images in the 
experiments. However, the AWGN conjecture may not 
hold for real-life digital photographs because the actual 
CMOS/CCD sensor noise is strongly dependent on the 
light intensity, and the forgery makers are unlikely to 
deliberately add noise to lower the visual quality of the 
fake images. Based on this consideration, Liu et al. [3] 
define a noise level function (NLF) with respect to image 
intensity. They collect a sample set representing spatial 
average and variation, and find the lower envelope of the 
samples. A Bayesian framework is used to optimize the 
fitting. The method is later extended to an application to 
noise removal [4]. In this paper, we address the issue of 
accurate evaluation of the noise level from an image with 
moderate noise level using an incomplete sample set. 

2 Model of Noise Level Functions 

In this section, we explore the correlation between the 
camera response function (CRF) and the corresponding 
noise level function (NLF). An NLF model is then 

established, which will be used to estimate NLF in 
Section 3. 

2.1 Camera response function 

Many image processing algorithms assume that the 
observed image intensity is linearly proportional to the 
scene radiance recorded by the camera sensor. However it 
is generally not the case. The camera response function 
(also termed the radiometric response function) f (·) is 
defined to describe the non-linear mapping between the 
scene radiance R and the measured intensity I in an image:  

I = f (R) (1) 

Assuming that f is continuous and monotonic, it can 
be inverted to obtain the inverse response function, 
denoted g(·). Neglecting the errors due to discretization, 
R can be obtained by R = g(I). Since only the observed 
output intensity I is available, most CRF estimation 
approaches attempt to find the inverse CRF g instead of f.  

2.2 Noise level function 

 
As pointed out in [5], noise produced in a digital camera 
is not simply additive, but strongly dependent on the 
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Figure.1.  Imaging process of transferring radiance photons 
into intensity bits.   
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image intensity. To describe the relationship between 
noise and image intensity, the noise level function (NLF) 
is defined as the variation of the standard deviation of 
noise with respect to image intensity [3]. Fig. 1 illustrates 
the imaging process of transferring radiance photons into 
intensity bits. Scene radiance passes through the lens and 
is contaminated by several kinds of noise prior to the 
transformation into intensity bits. Let R0, R and I donote 
noise-free scene radiance, noisy radiance and observed 
intensity respectively. Intensity of the noise-free image is 
denoted as I0, which cannot be obtained from a single 
image. There are four main types of noise [6]: photon 
shot noise, dark current noise, read-out noise and 
quantization noise, denoted NPS, NDC, NRO and NQ
respectively. From Fig. 1, negnecting the interference of 
CFA sampling and interpolation, the observed image 
itensity can be expressed as: 

� � � �Q 0 PS DC RO QI f R N f R N N N N� � � � � � � (2)

where f(·) is the CRF. By Taylor expantion, the first-
order approximation is [7]:

0 0 PS DC RO Q( ) '( ) ( )I f R f R N N N N� � � � � � (3)

Assume that all noise sources are zero-mean and 
independent of each other, and their standard deviations 
are σPS, σDC, σRO and σQ respectively. The variance of R
and I can be written as:

2 2 2 2
R PS DC RO� � � �� � � (4)

2 2 2 2 2 2
I 0 PS DC RO Q' ( ) ( )f R� � � � �� � � � � (5)

From (5), the variance of pixel values depends on 6 
items: the shape of CRF, the value of noise-free radiance 
and the variances of each noise components. Photon shot 
noise is caused by quantum fluctuation and once 
superimposed by this type of noise, radiance satisfies the 
Poisson distribution [5], viz., σPS is proportional to the 
square root of R0. Both dark current noise and read-out 
noise can be treated as additive white noise in most 
scenes, unless the photo is taken in extreme dark with 
long exposures. Quantization noise is usually very low in 
comparison to the other types of noise, and therefore will 
be ignored in the present work. Thus, (5) can be 
simplified as:

2 2 2 2
I 0 0 1 2' ( ) ( )f R R� � �� � � (6) 

where σ1
2= σPS

2/R0 and σ2
2=σDC

2�σRO
2. Since NLF is 

defined as a function of I0, the noise-free image intensity, 
according to R0=g(I0), Equation (6) can be further 
rewritten as:  

� � � � � �I 0
2 2

0 1 2 0I g I g I� � �� 	� (7)

Now we have revealed the relationship between NLF 
σI and inverse CRF g. Using (7), NLF can be found from 
g, σ1 and σ2. The inverse CRF g depends on the camera 
model, and σ1 and σ2 are related to the image recording 
parameters such as ISO, shutter speed, aperture, and the 
camera specifications, e.g., the level of sensor noise. We 
model NLF based on (7) for the following two 

considerations: 1) unlike the training based models [3], 
the parameters used here have physical meanings, and 2) 
estimation of NLF can be well constrained by the shape 
of CRF, especially in the relatively low noise level 
conditions. Therefore NLF and CRF can be well 
determined simultaneously. 

3 NLF estimation 

To estimate the noise level function from a single color 
image, a Bayesian approach is introduced. We divide the 
image into non-edge and edge regions, collect sample 
sets from both regions, and optimize the NLF using a
maximum a posteriori (MAP) inference. Fig. 2 is a block 
diagram of the method, which consists of two parts: 
sample sets collection and the formulation of the 
likelihood model and Bayesian MAP framework. These 
will be discussed in the following section.  

3.1 Estimation sample sets collection and 
distance metrics definition 

We first use the Canny operator and three-pixel 
dilation to divide the image into two groups of regions: 
edge regions and non-edge regions. Assume these regions 
are independent of each other. We group the non-edge 
pixels into non-overlapping regions based on spatial and 
intensity similarities using a mean-shift segmentation 
method as described in [8]. Let the original image be I,
we apply a de-noise filter, denoted d(·), to get its 
smoothed version ID. Here, d(·) is a wavelet based 
adaptive filter, which has been proved to be effective for 
images contaminated by common noise [9]. We define 
noise residual N as the difference between I and ID. Then 
ID and N are grouped into segments simultaneously 
according to mean-shift segmentation coordinates. Let Ii,
IDi and Ni be the i-th segments in I, ID and N, and Îi and σ̂i
the average of IDi and standard deviation of Ni

respectively. For each segment, we get a sample pair 
consisting of Îi and σ̂i . If a segment Ni is small enough or 
σ̂i is larger than the global standard deviation of N, we 
consider it as improper and discard it.  With all proper 

Figure. 2. Block diagram of the proposed NLF estimation method.
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segments, we can get a sample set {( Îi , σ̂i )} for each 
color channel, i.e., red, green and blue. However, since 
no ideal filter can separate image content and noise 
completely, we cannot estimate the noise level from an 
image directly from {( Îi , σ̂i )}. There are two types of 
errors existing in N: the one is that some details of the 
image content are wrongly treated as noise component 
and left in N, and the other is that some real noise are 
regarded as image details and filtered out. Generally, 
probability of the former error type is larger than the 
latter. For this reason, we use the sum of lower envelope 
squared error as a measure of the difference between 
ground-truth NLF and collected samples. For each 
channel, to obtain the lower envelope of {( Îi , σ̂i )}, we 
discretize the range of intensity [0, 1] into uniform 
intervals {[nh, (n+1)h]}with n=0,1...(1/h-1), where h is a 
uniform interval and is set to 1/64 in our method. For any 
subset Λn={( Îi , σ̂i )| nh≤ Îi ≤ (n+1)h}, we can find a  pair 
(În , σ̂n )with the minimum σ̂n =minΛn σ̂i .  By traversing all 

the possible Λn, we can get a sample set {( În , σ̂n )| 0≤
n≤1/h-1}from each channel. Then we combine all sets 
collected from each channel as a whole set, denoted Ω1.
Suppose the ground truth NLF is known, denoted σI.
Then we use the sum of squared error to measure the 
difference between σI and samples σ̂n in Ω1. Denote this 
difference metric as D1, which can be computed as 

� �
1/ 1 2

1 I 1 I
RGB 0

ˆ ˆ;  ( )
h

k nk nk

k n

D I� � �



� �

� �
 � 
� �� � (8)

where subscript k is added for distinguishing all 
components in different color channels. Following the 
model derived from Equation (7), Equation (8) can be 
rewritten as

� �
� �

� �

2
2 2

1/ 1 1 2

1 1 2 1
k RGB 0

ˆ
ˆ, , ;  

ˆ

h
nk k k

nk

n
nk

g I

D g

g I

� �
� � �




� �
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 � 
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� � (9) 

As indicated in Section 2, NLF is strongly dependent 
on the shape of camera response function. In our method, 
to restrict the profile of NLF, we employ an edge based 
inverse CRF estimation method proposed in [10]. 
Suppose a small patch in image containing two regions 
with distinct but uniform colors, denoted R1m, R2m. Let 

M̂1m and M̂2m denote the mean color of R1m and R2m

respectively. In addition, assume a pixel M̂Em is on the 

edge between R1m and R2m. Here M̂1m , M̂2m and M̂Em are 
all three-element vectors which represent intensities in 
RGB channels. As stated in [10], the irradiance of the 
pixel on edge should be a linear combination of those 
pixels on R1m and R2m before nonlinear CRF mapping. 
This property is used to estimate inverse CRF, namely 
finding a function g to map M̂1m , M̂2m and M̂Em back to 
the linear relationship in color spaces. The distance from 
g(M̂Em ) to line ¯¯¯¯¯¯¯¯¯¯¯¯g(M̂1m) g(M̂2m) can be computed as:

� � � � � � � �
� � � �

1 2 E 2

1 2

ˆ ˆ ˆ ˆ

ˆ ˆ
m m m m

m

m m

g g g g

H

g g

� � � �
 � 
� � � ��



M M M M
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(10)

where | · | is the Euclidean norm (L2-norm) of a vector 
and × denote the cross product of two vectors. After 
scanning all patches along extracted edges, we select the 
patches containing two regions with distinct but uniform 
colors as valid sample patches for estimation. Suppose 
the total number of valid patches is K, then we get a 
sample set {( M̂1m , M̂2m , M̂Em )| 1≤m≤K}, denoted Ω2.
Given an inverse CRF g, we define a total distance metric 
D2 to measure the linearity mapping by g: 

� � �

�


2

2
22  ;

m
HgD (11) 

Here, different from [10], we define D2 as the sum of 
squares instead of direct accumulation to achieve the 
consistency with the definition in D1. Although there are 
other existing algorithms for CRF estimation, we apply 
edge based method due to the following consideration: 
image edge regions and non-edge regions can be treated 
as independent components and this merit can greatly 
facilitate us to construct the likelihood model in the next 
step.

So far we have interpreted how to collect two 
independent sample sets Ω1 and Ω2 from image non-edge 
regions and edge regions. In addition, two distance 
metrics D1 and D2 have also been defined as the 
measurements of differences between estimate values and 
samples. 

3.2 Estimating NLF using Bayesian MAP 
inference 

To estimate the NLF from inadequate sample sets Ω1
and Ω2, we use Bayesian MAP inference to solve this 
problem. Prior and likelihood models should be set up 
before maximizing the posterior probability.

Suppose g, σ1and σ2 are independent with each other. 
Based on the model proposed in Equation (7), the prior 
model of NLF can be disassembled as:

P(σI)=P(g, σ1, σ2)= P(g) P(σ1) P(σ2) (12)

where P(g) is the prior probability of inverse CRF and 
P(σ1) , P(σ2) represent  the prior probabilities of  σ1 , σ2
which are supposed to obey the uniform distribution. Due 
to the incomplete samples, it is impossible to estimate g
with numerous parameters. To use fewer coefficients 
representing g, as indicated in [11], any g can be 
concisely represented as 

0
1

J

j j

j

g �
�

� ��g g (13)

where g0 and gj (j =1,2...J) represent the mean vector and 
eigenvectors of 201 real-world inverse CRF curves, 
respectively. All these vectors can be downloaded from 
the database of real-world CRFs (DoRF), which are 
derived from a principal component analysis (PCA) on 
the observed CRF data. αj(j =1,2...J) are the 

06004-p.3
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representation coefficients, namely, we can use limited 
(the number of J) coefficients αj describing g. Note the 
lengths of vectors g0 and gj are all 1024 in this model.
Following [10], J is set to 5 and the prior probability of g
is formulated by a Gaussian mixture model which can be 
trained from the PCA coefficients in the DoRF database. 

Likelihood function represents the probability to see 
observed sample sets once the parameters for estimation 
are given. Since Ω1 and Ω2 can be regarded as 
independent sets and the likelihood probability
monotonically decrease with the increment of D1 and D2,
the likelihood function L (σI) is defined as a joint 
bivariate exponential distribution:

� � � �
� � � �

� � � �

I 1 2 1 2

1 1 2 2

1 1 1 2 1 2 2 2

, , ,

         , ,

         exp , , ; ;

L P g

P g P g

D g D g

� � �

� �

� � � �

� 
 


� 
 


� 
 
 
 
� �� �

(14) 

where likelihood L is proportional to a product of two 
negative exponential functions with respect to D1 and D2,
respectively. λ1 and λ2 are two weighting parameters to 
control the constraint intensity on the shape of NLF and 
are empirically both set to 10 in our method.  

Now, based on the model of prior and likelihood, we 
solve the whole problem by Bayesian MAP inference. In 
General, for a color image, there are three different NLF 
curves in RGB channels individually. However, 
considering the similarity of g in each channel and ease 
of our estimation, the inverse CRF g in every channel is
considered to be identical. Based on this assumption, we 
estimate all three NLFs totally using 11 parameters: {(αj,
σ1k, σ2k )}, where j=1…5, k=R, G, B. Taking the 
logarithm of posteriori function, Bayesian inference turns 
out to be a minimum problem:

� �� �
� � � � � �� �

1 2

*
I 1 1 1 2 1 2 2 2

, ,
arg min , , ; ; log

l k k

D g D g P g

� � �
� � � � �� �� 
 � 
 
� � (15) 

To obtain the minimum of Equation (15), we seek the 
local minimum by non-linear Levenberg-Marquardt-
Fletcher algorithm with 40 groups of different initial
values. To reduce complexity, the maximum number of 
iterations for each group is limited to 200. Finally NLF is 
determined by selecting one group of optimal values from 
all candidate minimums followed by a low-pass filter to 
refine the shape of NLF. 

4 Experimental results 
To evaluate our algorithm, we compare NLFs from 
estimation with those of ground-truth.  Following [3], the 
reference ground-true NLF is obtained by taking 30 
photos of a static scene using the same camera with the 
same parameters and calculating the mean image. We 
collect 21 group test photos as our dataset shown in Fig.3. 
All photos are numbered consecutively from top left to 
bottom right, where 01-10 are captured by Nikon D300, 
11-16 Nikon D3100, 17-19 Canon EOS 400D and 20-21 
Sony A350. Each photo is saved by RAW, TIF or fine 
JPEG formats and cropped or down-sampled to a size of 
1024×1024 square image for reduction of computational 
complexity. Fig.4 exemplifies our estimation results with 

different camera models. The first column in Fig.4 
depicts the test images, the rest columns show our 
estimated NLFs (labeled with color solid lines), observed 
sample sets Ω1 (labeled with color dots) and reference 
true NLFs (labeled with gray dashed lines) in red, green 
and blue components, respectively. As is shown in Fig. 4,
the agreements between our estimated NLFs and 
references, and the fits from the profile of observed 
samples are both performed well for most test images 
except for red component of test image no.14 listed in the 
second row of Fig.4.  One cause of this deviation is due 
to the complicated texture in red component of test image 
no.14, and the other is the noise model in Nikon D3100 is 
more like an AWGN model than our supposed model.   

For comparing with the method proposed in [3], we 
also use root-mean-square error (RMSE) and infinity 
norm (L∞-norm) to measure the difference between 
estimated NLFs and the reference NLFs. Here, L∞-norm 
of any vector can be simply determined by the absolute 
maximum of each element. Fig. 5 presents the RMSE of 
all test images in each color component. Table 1 lists the 
error statistics comparison of our method with Liu et al.’s
method, where the means and variances under two 
metrics are counted. Observed from Fig. 5 and Table 1, 
the proposed method has a smaller statistical error 
between estimators and ground truths. It should be 
explained that statistics offered in [3] are measured from 
relatively higher synthetic noisy images, so in the final 
analysis, the main difference between the proposed 
method and [3] comes from different objectives. The 
proposed method is more suitable for real taken photos.
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5 Conclusions 
In this paper, we have developed an algorithm to estimate 
the noise level function (NLF) from a single color image. 
Instead of a simple additive Gaussian noise assumption, 
we suppose the noise in most real photos is irradiance-
dependent. Following the definition of noise level 
function, we collect noise statistical samples from every 
image segment. Due to the incomplete sample set, we 
develop an approximate model to represent NLF by a 
first-order Taylor series expansion. Deduced from this 
model, the profile of a NLF is strongly dependent on its 
corresponding camera response function (CRF). To 
constrain the shape of NLF, we employ an edge based 
CRF estimation method and integrate it into our 
es t imat ion  method by a Ba yes ian  fra me work.  

Experimental results have demonstrated the efficacy of 
our NLF estimation and forgery detection methods.
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